System Identification

Lennart Ljung

Department of Electrical Engineering, Linkoping University

1.1

S-581 83 Linkoping, Sweden. e-mail 1jung@isy.liu.se

May 29, 1995

The Basic Ideas

10 Basic Questions About System Identification

. What is System Identification?

System Identification allows you to build mathematical models of a
dynamic system based on measured data.

How is that done?
Essentially by adjusting parameters within a given model until its out-
put coincides as well as possible with the measured output.

How do you know if the model is any good?
A good test is to take a close look at the model’s output compared to

the measurements on a data set that wasn’t used for the fit (“Validation
Data”).

Can the quality of the model be tested in other ways?

It is also valuable to look at what the model couldn’t reproduce in
the data (“the residuals”). There should be no correlation with other
available information, such as the system’s input.

10.

. What models are most common?

The techniques apply to very general models. Most common models are
difference equations descriptions, such as ARX and ARMAX models,
as well as all types of linear state-space models. Lately, black-box non-
linear structures, such as Artifical Neural Networks, Fuzzy models, and
so on, have been much used.

Do you have to assume a model of a particular type?

For parametric models, you have to specify the structure. However, if
you just assume that the system is linear, you can directly estimate
its impulse or step response using Correlation Analysis or its frequency
response using Spectral Analysis. This allows useful comparisons with
other estimated models.

How do you know what model structure to try?

Well, you don’t. For real life systems there is never any ”true model”,
anyway. You have to be generous at this point, and try out several
different structures.

Can non-linear models be used in an easy fashion?

Yes. Most common model nonlinearities are such that the measured
data should be nonlinearly transformed (like squaring a voltage input if
you think that it’s the power that is the stimulus). Use physical insight
about the system you are modeling and try out such transformations
on models that are linear in the new variables, and you will cover a lot.

. What does this article cover?

After reviewing an archetypical situation in this section, we describe
the basic techniques for parameter estimation in arbitrary model struc-
tures. Section 3 deals with linear models of black-box structure, and
Section 4 deals with particular estimation methods that can be used
(in addition to the general ones) for such models. Physically param-
eterized model structures are described in Section 5, and non-linear
black box models (including neural networks) are discussed in Section
6. The final Section 7 deals with the choices and decisions the user is
faced with.

Is this really all there is to System Identification?
Actually, there is a huge amount written on the subject. Experience

with real data is the driving force to further understanding. It is im-
portant to remember that any estimated model, no matter how good
it looks on your screen, has only picked up a simple reflection of real-
ity. Surprisingly often, however, this is sufficient for rational decision
making.

1.2 Background and Literature

System Identification has its roots in standard statistical techniques and
many of the basic routines have direct interpretations as well known statis-
tical methods such as Least Squares and Maximum Likelihood. The control
community took an active part in the development and application of these
basic techniques to dynamic systems right after the birth of “modern con-
trol theory” in the early 1960’s. Maximum likelihood estimation was applied
to difference equations (ARMAX models) by [Astrom and Bohlin, 1965] and
thereafter a wide range of estimation techniques and model parameteriza-
tions flourished. By now, the area is well matured with established and well
understood techniques. Industrial use and application of the techniques has
become standard. See [Ljung, 1986] for a common software package.

The literature on System Identification is extensive. For a practical user ori-

ented introduction we may mention [Ljung and Glad, 1994]. Texts that go

deeper into the theory and algorithms include [Ljung, 1987], and [Soderstrom and Stoica, 1989].
A classical treatment is [Box and Jenkins, 1970].

These books all deal with the “mainstream” approach to system identifica-

tion, as described in this article. In addition, there is a substantial literature

on other approaches, such as “set membership” (compute all those models

that reproduce the observed data within a certain given error bound), estima-

tion of models from given frequency response measurement [Schoukens and Pintelon, 1991],
on-line model estimation [Ljung and Séderstrom, 1983], non-parametric fre-

quency domain methods [Brillinger, 1981], etc. To follow the development in

the field, the IFAC series of Symposia on System Identification (Budapest,

1991, Copenhagen, 1994) is a good source.

1.3 An Archetypical Problem — ARX Models and the
Linear Least Squares Method

The Model

We shall generally denote the system’s input and output at time ¢ by wu(t)
and y(t), respectively. Perhaps the most basic relationship between the input
and output is the linear difference equation

y &) +ay(t—1)+...+ayt—n) =bu(t—1)+ ...+ buu(t —m)(1)

We have chosen to represent the system in discrete time, primarily since ob-
served data are always collected by sampling. It is thus more straightforward
to relate observed data to discrete time models. Nothing prevents us how-
ever from working with continuous time models: we shall return to that in
Section 5.

In (1) we assume the sampling interval to be one time unit. This is not
essential, but makes notation easier.

A pragmatic and useful way to see (1) is to view it as a way of determining
the next output value given previous observations:

y(t) = —ay(t—1)— ... —a,y(t —n) +bu(t —1)+ ...+ bpu(t —m)(2)
For more compact notation we introduce the vectors

0=1lar,....anby,... 0" (3)

o) =[-ylt —1) ... —y{t—n)ult—1)...ult—m)]" (4)

With these (2) can be rewritten as

To emphasize that the calculation of y(¢) from past data (2) indeed depends
on the parameters in 6, we shall rather call this calculated value §(¢|6) and
write

§(tle) =" ()0 (5)

The Least Squares Method

Now suppose for a given system that we do not know the values of the
parameters in ¢, but that we have recorded inputs and outputs over a time
interval 1 < ¢ < N:

Z% = {u(1),y(1),...,u(N),y(N)} (6)

An obvious approach is then to select § in (1) through (5) so as to fit the
calculated values g(t|0) as well as possible to the measured outputs by the
least squares method:

min Vy (8, Z") :
where
i, 2%) = L é(y(ﬂ — (t16))” = 0
_ %ﬁ;w — ¢ (1)0)?

We shall denote the value of # that minimizes (7) by fy:

Oy = arg main Vn (0, ZN) (9)

(“arg min” means the minimizing argument, i.e., that value of § which min-
imizes Vy.)

Since Vy is quadratic in f, we can find the minimum value easily by setting
the derivative to zero:

0= GUN0.2%) = 5 3ot £ 1))
which gives
;so(t)y(t) - ;w(t)soT(t)H (10)

i [zwwu)] S ety (t) (11)

t=1 t=1

Once the vectors ¢(t) are defined, the solution can easily be found by modern
numerical software, such as MATLAB.

Example 1 First order difference equation

Consider the simple model
y(t) +ay(t —1) =bu(t —1).

This gives us the estimate according to (3), (4) and (11)

I S B et

All sums are fromt =1 tot = N. A typical convention is to take values
outside the measured range to be zero. In this case we would thus take y(0) =
0.

The simple model (1) and the well known least squares method (11) form
the archetype of System Identification. Not only that they also give the
most commonly used parametric identification method and are much more
versatile than perhaps perceived at first sight. In particular one should realize
that (1) can directly be extended to several different inputs (this just calls
for a redefinition of ¢(¢) in (4)) and that the inputs and outputs do not have
to be the raw measurements. On the contrary it is often most important
to think over the physics of the application and come up with suitable inputs
and outputs for (1), formed from the actual measurements.

Example 2 An immersion heater

Consider a process consisting of an immersion heater immersed in a cooling
liquid. We measure:

e v(t): The voltage applied to the heater
e r(t): The temperature of the liquid

e y(t): The temperature of the heater coil surface

Suppose we need a model for how y(t) depends on r(t) and v(t). Some sim-
ple considerations based on common sense and high school physics (“Semi-
physical modeling”) reveal the following:

e The change in temperature of the heater coil over one sample is pro-
portional to the electrical power in it (the inflow power) minus the heat
loss to the liquid

e The electrical power is proportional to v?(t)

e The heat loss is proportional to y(t) — r(t)

This suggests the model

y(t) =yt —1) +av’(t = 1) = By(t — 1) —r(t = 1))

which fits into the form
y(t) +01y(t — 1) = 00%(t — 1) + O37(t — 1))

This is a two input (v* and r) and one output model, and corresponds to
choosing

p(t) =[—y(t—1) v*(t-1) rt-D

Some Statistical Remarks

Model structures, such as (5) that are linear in 6 are known in statistics
as linear regression and the vector (t) is called the regression vector (its
components are the regressors). “Regress” here alludes to the fact that we
try to calculate (or describe) y(t) by “going back” to ¢(t). Models such as
(1) where the regression vector ¢(t) contains old values of the variable
to be explained y(t) are then partly auto-regressions. For that reason
the model structure (1) has the standard name ARX-model (Auto-regression
with extra inputs).

There is a rich statistical literature on the properties of the estimate On
under varying assumptions. See, e.g. [Draper and Smith, 1981]. So far we
have just viewed (7) and (8) as “curve-fitting”. In Section 2.2 we shall deal
with a more comprehensive statistical discussion, which includes the ARX
model as a special case. Some direct calculations will be done in the following
subsection.

Model Quality and Experiment Design

Let us consider the simplest special case, that of a Finite Impulse Response
(FIR) model. That is obtained from (1) by taking n = 0:

y(t) =bru(t — 1) + ... buu(t —m) (12)

8

Suppose that the observed data really have been generated by a similar mech-
anism

y(t) = u(t — 1)+ ... 02 u(t —m) + e(t) (13)

where e(t) is a white noise sequence with variance A, but otherwise unknown.
(That is, e(t) can be described as a sequence of independent random variables
with zero mean values and variances A.) Analogous to (5), we can write this
as

y(t) = ¢" ()0 + e(t) (14)
We can now replace y(t) in (11) by the above expression, and obtain

%:ﬁywﬂﬂ >0l

- [Sewe o) [0+ 3 pwe

t=1
or

%z%—%zkywﬂﬂ > el (15)

Suppose that the input u is independent of the noise e. Then ¢ and e are
independent in this expression, so it is easy to see that Efy = 0, since
e has zero mean. The estimate is consequently unbiased. Here E denotes
mathematical expectation.

We can also form the expectation of 9~N9~%, i.e., the covariance matrix of the
parameter error. Denote the matrix within brackets by Ry . Take expectation
with respect to the white noise e. Then Ry is a deterministic matrix and we
have

Py = EOp0% = Ry g: o) (s)Ee(t)e(s)Ry' = ARy (16)

t,s=1

since the double sum collapses to AR .

We have thus computed the covariance matrix of the estimate éN. It is

determined entirely by the input properties and the noise level. Moreover
define

R= lim —R 17)
TN N (

This will be the covariance matriz of the input, i.e. the i — j-element of R is
R,.(i — j), as defined by (89) later on.

If the matrix R is non-singular, we find that the covariance matrix of the
parameter estimate is approximately (and the approximation improves as
N — o0)

)
Py = NR’I (18)

A number of things follow from this. All of them are typical of the general
properties to be described in Section 2.2:

e The covariance decays like 1/N, so the parameters approach the limit-
ing value at the rate 1/v/N.

e The covariance is proportional to the Noise-To-Signal ratio. That is, it
is proportional to the noise variance and inversely proportional to the
input power.

e The covariance does not depend on the input’s or noise’s signal shapes,
only on their variance/covariance properties.

e Experiment design, i.e., the selection of the input u, aims at making
the matrix R~! ”as small as possible”. Note that the same R can be
obtained for many different signals u.

10

1.4 The Main Ingredients

The main ingredients for the System Identification problem are as follows

e The data set ZV
e A class of candidate model descriptions; a Model Structure.
e A criterion of fit between data and models.

e Routines to validate and accept resulting models.

We have seen in Section 1.3 a particular model structure, the ARX-model.
In fact the major problem in system identification is to select a good model
structure, and a substantial part of this article deals with various model
structures. See Sections 3, 5, and 6, which all concern this problem. Gener-
ally speaking, a model structure is a parameterized mapping from past inputs
and outputs Z!~! (cf (6)) to the space of the model outputs:

y(tle) = g0, Z2") (19)

Here 0 is the finite dimensional vector used to parameterize the mapping.

Actually, the problem of fitting a given model structure to measured data is
much simpler, and can be dealt with independently of the model structure
used. We shall do so in the following section.

The problem of assuring a data set with adequate information contents is
the problem of experiment design, and it will be described in Section 7.1.

Model validation is both a process to discriminate between various model
structures and the final quality control station, before a model is delivered
to the user. This problem is discussed in Section 7.2.

2 General Parameter Estimation Techniques

In this section we shall deal with issues that are independent of model struc-
ture. Principles and algorithms for fitting models to data, as well as the

11

general properties of the estimated models are all model-structure indepen-
dent and equally well applicable to, say, ARMAX models and Neural Network
models.

The section is organized as follows. In Section 2.1 the general principles
for parameter estimation are outlined. Sections 2.2 and 2.3 deal with the
asymptotic (in the number of observed data) properties of the models, while
algorithms, both for on-line and off-line use are described in Section 2.5.

2.1 Fitting Models to Data

In Section 1.3 we showed one way to parameterize descriptions of dynamical
systems. There are many other possibilities and we shall spend a fair amount
of this contribution to discuss the different choices and approaches. This is
actually the key problem in system identification. No matter how the problem
is approached, the bottom line is that such a model parameterization leads
to a predictor

g(tle) = g0, 2"") (20)

that depends on the unknown parameter vector and past data Z'~! (see (6).
This predictor can be linear in y and ». This in turn contains several special
cases both in terms of black-box models and physically parameterized ones,
as will be discussed in Sections 3 and 5, respectively. The predictor could
also be of general, non-linear nature, as will be discussed in Section 6.

In any case we now need a method to determine a good value of 0, based
on the information in an observed, sampled data set (6). It suggests itself
that the basic least-squares like approach (7) through (9) still is a natural
approach, even when the predictor g(#|f) is a more general function of 6.

A procedure with some more degrees of freedom is the following one

1. From observed data and the predictor 5(¢|@) form the sequence of pre-
diction errors,

e(t,0) =y(t) —9(te), t=1,2,...N (21)

12

2. Possibly filter the prediction errors through a linear filter L(q),
ep(t,0) = L(q)e(t, 0) (22)

(here ¢ denotes the shift operator, qu(t) = u(t + 1)) so as to enhance
or depress interesting or unimportant frequency bands in the signals.

3. Choose a scalar valued, positive function £(-) so as to measure the “size”
or “norm” of the prediction error:

l(er(t,0)) (23)

4. Minimize the sum of these norms:

Oy = arg min Vy (6, Z") (24)
where
1 N
t=1

This procedure is natural and pragmatic we can still think of it as “curve-
fitting” between y(¢) and §(¢|0). It also has several statistical and information
theoretic interpretations. Most importantly, if the noise source in the system
(like in (62) below) is supposed to be a sequence of independent random
variables {e(t)} each having a probability density function f,(x), then (24)
becomes the Maximum Likelihood estimate (MLE) if we choose

L(g)=1 and [((c) = —log fe(¢) (26)

The MLE has several nice statistical features and thus gives a strong “moral
support” for using the outlined method. Another pleasing aspect is that the
method is independent of the particular model parameterization used (al-
though this will affect the actual minimization procedure). For example, the
method of “back propagation” often used in connection with neural network
parameterizations amounts to computing éN in (24) by a recursive gradient
method. We shall deal with these aspects in Section 2.5.

13

2.2 Model Quality

An essential question is, of course, what properties will the estimate resulting
from (24) have. These will naturally depend on the properties of the data
record Z" defined by (6). It is in general a difficult problem to characterize
the quality of O exactly. One normally has to be content with the asymptotic
properties of On as the number of data, N, tends to infinity.

It is an important aspect of the general identification method (24) that the
asymptotic properties of the resulting estimate can be expressed in general
terms for arbitrary model parameterizations.

The first basic result is the following one:

Oy —60* as N — 0o where (27)
0" = arg mgin El(ep(t,0)) (28)

That is, as more and more data become available, the estimate converges to
that value #*, that would minimize the expected value of the “norm” of the
filtered prediction errors. This is in a sense the best possible approximation of
the true system that is available within the model structure. The expectation
E in (28) is taken with respect to all random disturbances that affect the
data and it also includes averaging over the input properties. This means
in particular that 6* will make g(¢|0*) a good approximation of y(¢) with
respect to those aspects of the system that are enhanced by the input signal
used.

The second basic result is the following one: If {£(¢,0%)} is approximately
white noise, then the covariance matrix of Ay is approximately given by

Bl — 00— 0)7 ~ (B (1) (29)
where
A= Ee(t,6%) (30)

14

o(t) = 10 lo=o (31)

Think of v as the sensitivity derivative of the predictor with respect to the
parameters. Then (29) says that the covariance matrix for 0 is proportional
to the inverse of the covariance matrix of this sensitivity derivative. This is
a quite natural result.

Note: For all these results, the expectation operator F can, under most
general conditions, be replaced by the limit of the sample mean, that is

Bo(0u" (1) Jim > 60" () (52)

N—o00

O

The results (27) through (31) are general and hold for all model structures,
both linear and non-linear ones, subject only to some regularity and smooth-
ness conditions. They are also fairly natural, and will give the guidelines for
all user choices involved in the process of identification. See [Ljung, 1987] for
more details around this.

2.3 Measures of Model Fit

Some quite general expressions for the expected model fit, that are indepen-
dent of the model structure, can also be developed.

Let us measure the (average) fit between any model (20) and the true system
as

V(0) = Ely(t) — (t)0)” (33)

Here expectation E is over the data properties (i.e. expectation over “Z>”
with the notation (6)). Recall that expectation also can be interpreted as
sample means as in (32).

15

Before we continue, let us note the very important aspect that the fit V
will depend, not only on the model and the true system, but also on data
properties, like input spectra, possible feedback, etc. We shall say that the
fit depends on the experimental conditions.

The estimated model parameter fy is a random variable, because it is con-
structed from observed data, that can be described as random variables. To
evaluate the model fit, we then take the expectation of V(éN) with respect
to the estimation data. That gives our measure

Fy =EV(0y) (34)

In general, the measure Fy depends on a number of things:

e The model structure used.
e The number of data points N.
e The data properties for which the fit V is defined.

e The properties of the data used to estimate éN.

The rather remarkable fact is that if the two last data properties coincide,
then, asymptotically in N, (see, e.g., [Ljung, 1987], Chapter 16)

dim@
|

Fy ~ Vy(6%)(1 N)

(35)

Here 0* is the value that minimizes the expected criterion (28). The notation
dimf means the number of estimated parameters. The result also assumes
that the criterion function ¢(s) = ||¢||?, and that the model structure is
successful in the sense that £x(t) is approximately white noise.

Despite the reservations about the formal validity of (35), it carries a most
important conceptual message: If a model is evaluated on a data set with the
same properties as the estimation data, then the fit will not depend on the

16

data properties, and it will depend on the model structure only in terms of
the number of parameters used and of the best fit offered within the structure.

The expression can be rewritten as follows. Let ¢(¢]t — 1) denote the “true”
one step ahead prediction of y(t), and let

W (0) = Blgo(tlt —1) — 5(t|6) (36)
and let
A= Ely(t) — go(tlt — 1) (37)

Then \ is the innovations variance, i.e., that part of y(t) that cannot be pre-
dicted from the past. Moreover W (6*) is the bias error, i.e. the discrepancy
between the true predictor and the best one available in the model structure.
Under the same assumptions as above, (35) can be rewritten as

dim@
N

Fy = A+ W(0")+ A (38)

The three terms constituting the model error then have the following inter-
pretations

e)\ is the unavoidable error, stemming from the fact that the output
cannot be exactly predicted, even with perfect system knowledge.

e W(6*) is the bias error. It depends on the model structure, and on the
experimental conditions. It will typically decrease as dimf increases.

e The last term is the wvariance error. 1t is proportional to the number
of estimated parameters and inversely proportional to the number of
data points. It does not depend on the particular model structure or
the experimental conditions.

17

2.4 Model Structure Selection

The most difficult choice for the user is no doubt to find a suitable model
structure to fit the data to. This is of course a very application-dependent
problem, and it is difficult to give general guidelines. (Still, some general
practical advice will be given in Section 7.)

At the heart of the model structure selection process is to handle the trade-
off between bias and variance, as formalized by (38). The "best” model
structure is the one that minimizes Fly, the fit between the model and the
data for a fresh data set — one that was not used for estimating the model.
Most procedures for choosing the model structures are also aiming at finding
this best choice.

Cross Validation

A very natural and pragmatic approach is Cross Validation. This means
that the available data set is split into two parts, estimation data, Zgﬂ that
is used to estimate the models:

O, = argmin Vy, (0, ZN) (39)

est

and wvalidation data, Z,; for which the criterion is evaluated:

FN] =V, (91\71) Z\Zj) (40)
Here Vy is the criterion (25). Then Fy will be an unbiased estimate of the
measure Fy, defined by (34), which was discussed at length in the previous
section. The procedure would the be to try out a number of model structures,
and choose the one that minimizes Fl, .

Such cross validation techniques to find a good model structure has an im-
mediate intuitive appeal. We simply check if the candidate model is capable
of "reproducing” data it hasn’t yet seen. If that works well, we have some
confidence in the model, regardless of any probabilistic framework that might
be imposed. Such techniques are also the most commonly used ones.

18

A few comments could be added. In the first place, one could use different
splits of the original data into estimation and validation data. For example,
in statistics, there is a common cross validation technique called ”leave one
out”. This means that the validation data set consists of one data point ”at
a time”, but successively applied to the whole original set. In the second
place, the test of the model on the validation data does not have to be in
terms of the particular criterion (40). In system identification it is common
practice to simulate (or predict several steps ahead) the model using the
validation data, and then visually inspect the agreement between measured
and simulated (predicted) output.

Estimating the Variance Contribution — Penalizing the Model Com-
plexity

It is clear that the criterion (40) has to be evaluated on the validation data
to be of any use it would be strictly decreasing as a function of model
flexibility if evaluated on the estimation data. In other words, the adverse
effect of the dimension of # shown in (38) would be missed. There are a
number of criteria often derived from entirely different viewpoints that
try to capture the influence of this variance error term. The two best known
ones are Akaike’s Information Theoretic Criterion, AIC, which has the form
(for Gaussian disturbances)

) 2dimf\ 1
V(0. ZV) = <1+ dzmg)

~ N;ﬁ(t, 0) (41)

and Rissanen’s Minimum Description Length Criterion, MDL in which dim#
in the expression above is replaced by log Ndim#. See [Akaike, 1974a] and
[Rissanen, 1978].

The criterion Vi is then to be minimized both with respect to f and to a
family of model structures. The relation to the expression (35) for Fy is
obvious.

19

2.5 Algorithmic Aspects

In this section we shall discuss how to achieve the best fit between observed
data and the model, i.e. how to carry out the minimization of (24). For
simplicity we here assume a quadratic criterion and set the prefilter L to
unity:

Z ly(t) — 5(t(6)? (42)

No analytic solution to this problem is possible unless the model g(¢]0) is
linear in #, so the minimization has to be done by some numerical search
procedure. A classical treatment of the problem of how to minimize the sum
of squares is given in [Dennis and Schnabel, 1983].

Most efficient search routines are based on iterative local search in a “down-
hill” direction from the current point. We then have an iterative scheme of
the following kind

G0+D — 60— 1 Ry, (43)

Here 0 is the parameter estimate after iteration number i. The search
scheme is thus made up of the three entities

® /i; step size
e §; an estimate of the gradient V/ ()

e 2, a matrix that modifies the search direction
It is useful to distinguish between two different minimization situations

(i) Off-line or batch: The update y; R; 'g! is based on the whole available
data record ZV.

(ii) On-line or recursive: The update is based only on data up to sample i
(Z%), (typically done so that the gradient estimate g; is based only on
data just before sample 1.

20

We shall discuss these two modes separately below. First some general as-
pects will be treated.

Search directions

The basis for the local search is the gradient

V(o) = 0O S) — i, 0 (44

t=1

where

0(1,0) = (110 (45)

The gradient 1 is in the general case a matrix with dim 6 rows and dim y
columns. It is well known that gradient search for the minimum is inefficient,
especially close to the minimum. Then it is optimal to use the Newton search
direction

R OVA(6) (46)
where
RO = Vi(0) = T = 3 (e 0T (10
= 1) — i(110) (110 (47)

The true Newton direction will thus require that the second derivative

62

—i(10)

be computed. Also, far from the minimum, R(€) need not be positive semidef-
inite. Therefore alternative search directions are more common in practice:

21

Gradient direction. Simply take

Gauss-Newton direction. Use

N

i =~ 3 (e, 0967 (1,69) (49)

=1

R;

Levenberg-Marquard direction. Use

where H; is defined by (49).

Conjugate gradient direction. Construct the Newton direction from a se-
quence of gradient estimates. Loosely, think of V as constructed by
difference approximation of d gradients. The direction (46) is however
constructed directly, without explicitly forming and inverting V.

It is generally considered, [Dennis and Schnabel, 1983], that the Gauss-Newton
search direction is to be preferred. For ill-conditioned problems the Levenberg-
Marquard modification is recommended.

On-line algorithms

The expressions (44) and (47) for the Gauss-Newton search clearly assume
that the whole data set Z" is available during the iterations. If the applica-
tion is of an off-line character, i.e., the model gy is not required during the
data acquisition, this is also the most natural approach.

However, many adaptive situations require on-line (or recursive) algorithms,
where the data are processed as they are measured. (Such algorithms are
in Neural Network contexts often also used in off-line situations.) Then the
measured data record is concatenated with itself several times to create a
(very) long record that is fed into the on-line algorithm. We may refer to
[Ljung and Séderstrom, 1983] as a general reference for recursive parameter

22

estimation algorithms. In [Solbrand et al., 1985] the use of such algorithms
in the off-line case is discussed.

It is natural to consider the following algorithm as the basic one:

O(t) = O(t — 1) + R, (L, 0(t — 1))e(t,0(t — 1)) (51)
et,0) = y(t) — §(t|0) (52)
Ry = Rey + (8,00t — 1)) (1,00t — 1)) — Ri] (53)

The reason is that if §(#|f) is linear in 0, then (51) — (53), with u, = 1/¢,
provides the analytical solution to the minimization problem (42). This also
means that this is a natural algorithm close to the minimum, where a second
order expansion of the criterion is a good approximation. In fact, it is shown
in [Ljung and Soderstrom, 1983], that (51) — (53) in general gives an estimate
é(f) with the same (“optimal”) statistical, asymptotic properties as the true
minimum to (42).

It should be mentioned that the quantities §(¢/@(t — 1)) and (¢, 0(t — 1))
would normally (except in the linear regression case) require the whole data
record to be computed. This would violate the recursiveness of the algo-
rithm. In practical implementations these quantities are therefore replaced
by recursively computed approximations. The idea behind these approxima-
tions is to use the defining equation for ¢(¢|0) and (¢, 0) (which typically are
recursive equations), and replace any appearance of 6 with its latest available
estimate. See [Ljung and Séderstrom, 1983] for more details.

Some averaged variants of (51) — (53) have also been discussed:

O(1) = 0(t — 1) + R, " 0(t, 00t — 1))e(t,0(t — 1)) (54)
6(t) = 6(t — 1) + (1) — O(t — 1)] (55)

The basic algorithm (51) — (53) then corresponds to p; = 1. Using p; < 1
gives a so called “accelerated convergence” algorithm. It was introduced

23

by [Polyak and Juditsky, 1992] and has then been extensively discussed by
[Kushner and Yang, 1993] and others. The remarkable thing with this aver-
aging is that we achieve the same asymptotic statistical properties of é(f) by
(54) — (55) with R, = I (gradient search) as by (51) — (53) if

Pt — 1/t
Mt >> Pi py — 0

It is thus an interesting alternative to (51) (53), in particular if dim#@ is
large so R; is a big matrix.

Local Minima

A fundamental problem with minimization tasks like (42) is that Vi () may
have several or many local (non-global) minima, where local search algo-
rithms may get caught. There is no easy solution to this problem. It is
usually well worth the effort to find a good initial value 6(®) where to start
the iterations. Other than that, only various global search strategies are
left, such as random search, random restarts, simulated annealing, and the
genetic algorithm.

3 Linear Black Box Systems

3.1 Linear System Descriptions in General
A linear System with Additive Disturbances

A linear system with additive disturbances v(t) can be described by

y(t) = Glg)u(t) +v(f) (56)

24

Here u(t) is the input signal, and G(g) is the transfer function from input to
output y(¢). The symbol ¢ is the shift operator, so (56) should be interpreted
as

y(t) = i gru(t — k) +o(t) = (i geq Mu(t) + v(t) (57)

The disturbance v(t) can in general terms be characterized by its spectrum,
which is a description of its frequency content. It is often more convenient
to describe v(t) as being (thought of as) obtained by filtering a white noise
source e(t) through a linear filter H(q):

v(t) = H(q)e(t) (58)

This is, from a linear identification perspective, equivalent to describing v(t)
as a signal with spectrum

@, (w) = A H(e™)]? (59)

where) is the variance of the noise source e(t). We shall assume that H(q)
is normalized to be monic, i.e.,

H(g) =1+ i_oj hig (60)

Putting all of this together, we arrive at the standard linear system descrip-
tion

y(t) = G(q)u(t) + H(q)e(t) (61)

Parameterized Linear Models

Now, if the transfer functions G and H in (61) are not known, we would
introduce parameters # in their description that reflect our lack of knowledge.

25

The exact way of doing this is the topic of the present section as well as of
Section 5.

In any case the resulting, parameterized model will be described as
y(t) = G(q, O)u(t) + H(q, O)e(t) (62)

The parameters can then be estimated from data using the general proce-
dures described in Chapter 2.

Predictors for Linear Models

Given a system description (62) and input-output data up to time ¢ — 1,
y(s),u(s) s<t—1 (63)

how shall we predict the next output value y/(t)?

In the general case of (62) the prediction can be deduced in the following
way: Divide (62) by H(q,0):

H~(q,0)y(t) = H'(q,0)G(q, 0)u(t) + e(t)
or
y(t) =[1—H '(q,0)ly(t) + H '(q,0)G(q, 0)u(t) + e(t) (64)
In view of the normalization (60) we find that

H(q,0) —1 1 e e
— hiq
H(q,0) H(qﬁ),; ‘

1—H (q,0) =

The expression [1 — H (g, 0)]y(t) thus only contains old values of y(s), s <
t — 1. The right side of (64) is thus known at time ¢ — 1, with the exception
of e(t). The prediction of y(¢) is simply obtained from (64) by deleting e(t):

§(t0) = [1 = H Y(q,0)]y(t) + H '(g,0)G(q,0)u(t) (65)

26

This is a general expression for how ready-made models predict the next
value of the output, given old values of y and w.

A Characterization of the Limiting Model in a General Class of
Linear Models

Let us apply the general limit result (27)-(28) to the linear model structure
(62) (or (65)). If we choose a quadratic criterion ¢(¢) = &2 (in the scalar
output case) then this result tells us, in the time domain, that the limiting
parameter estimate is the one that minimizes the filtered prediction error
variance (for the input used during the experiment.) Suppose that the data
actually have been generated by

y(t) = Gol(q)u(t) + v(t) (66)

Let ®,(w) be the input spectrum and ®,(w) be the spectrum for the additive
disturbance v. Then the filtered prediction error can be written

cr (1) = 5 (D)~ Gl)u(t)] =
L(g)
g,y (Co(@) — Gla.O)u(t) +v(t) (67)

By Parseval’s relation, the prediction error variance can also be written as an
integral over the spectrum of the prediction error. This spectrum, in turn,
is directly obtained from (67), so the limit estimate 6* in (28) can also be
defined as

|2<I>u(w)|L(€“)l2dw
|H (e™, 0)]> (68)

0 = argming [/W |G0(ei“’) _ C;’(eiu;7 0)

N 7; q)w(w)L(eiw)2/H(e“,9)2dw}

If the noise model H(q,0) = H.(q) does not depend on f (as in the output
error model (75)) the expression (68) thus shows that the resulting model

27

G(e™, 0*) will give that frequency function in the model set that is closest to
the true one, in a quadratic frequency norm with weighting function

Q(w) = @y (w) | L(e™)|*/|H.(e)[? (69)

This shows clearly that the fit can be affected by the choice of prefilter L,
the input spectrum @, and the noise model H,.

3.2 Linear, Ready-made Models

Sometimes we are faced with systems or subsystems that cannot be modeled
based on physical insights. The reason may be that the function of the system
or its construction is unknown or that it would be too complicated to sort
out the physical relationships. It is then possible to use standard models,
which by experience are known to be able to handle a wide range of different
system dynamics. Linear systems constitute the most common class of such
standard models. From a modeling point of view these models thus serve as
ready-made models: tell us the size (model order), and it should be possible
to find something that fits (to data).

A Family of Transfer Function Models

A very natural approach is to describe G and H in (62) as rational transfer
functions in the shift (delay) operator with unknown numerator and denom-
inator polynomials.

We would then have

G(q 0) _ B(q) _ blq*nk + b2q7nk71 + -+ banfnkntrH (70)

n(t) = G(q, 0)u(t) (71)

28

is a shorthand notation for the relationship

n(t) + fin(t = 1) + -+ fapn(t — nf)
=biu(t —nk) + -+ by(t — (nb+nk — 1)) (72)

There is also a time delay of nk samples. We assume assume, for simplicity,
that the sampling interval T" is one time unit.

In the same way the disturbance transfer function can be written

C(q) 1+ cig V4 e ™

H(q,0) = =
(4.6) D(q) 14+dig '+ +dpag ™

(73)

The parameter vector # thus contains the coefficients b;, ¢;, d;, and f; of
the transfer functions. This ready-made model is thus described by five
structural parameters: nb, nc, nd, nf, and nk. When these have been chosen,
it remains to adjust the parameters b;, ¢;, d;, and f; to data. This is done with
the methods of Section 2. The ready-made model (70)-(73) gives

40 = Fqu(®) + S (o (1)

and is known as the Boz-Jenkins (B.J) model, after the statisticians G. E. P.
Box and G. M. Jenkins.

An important special case is when the properties of the disturbance signals
are not modeled, and the noise model H(q) is chosen to be H(q) = 1; that is,
ne = nd = 0. This special case is known as an output error (OE) model since
the noise source e(t) will then be the difference (error) between the actual
output and the noise-free output:

B(q)
F(q)

y(t) = u(t) + e(t) (75)

A common variant is to use the same denominator for G and H:
F(q)=D(g) = A(g) =1 +ayg "+ + apea™™ (76)

29

Multiplying both sides of (74) by A(q) then gives

A(q)y(t) = B(q)u(t) + C(q)e(t) (77)

This ready-made model is known as the ARMAX model. The name is derived
from the fact that A(q)y(f) represents an AutoRegression and C(q)e(t) a
Moving Average of white noise, while B(q)u(t) represents an eXtra input (or
with econometric terminology, an eXogenous variable).

Physically, the difference between ARMAX and BJ models is that the noise
and input are subjected to the same dynamics (same poles) in the ARMAX
case. This is reasonable if the dominating disturbances enter early in the
process (together with the input). Consider for example an airplane where
the disturbances from wind gusts give rise to the same type of forces on the
airplane as the deflections of the control surfaces.

Finally, we have the special case of (77) that C(¢) = 1, that is, nc =0
Alq)y(t) = Blq)u(t) + e(t) (78)

which with the same terminology is called an ARX model, and which we

discussed at length in Section 1.3.

Figure 1 shows the most common model structures.

To use these ready-made models, decide on the orders na, nb, nc, nd, nf, and
nk and let the computer pick the best model in the class thus defined. The
obtained model is then scrutinized, and it might be found that other order
must also be tested.

A relevant question is how to use the freedom that the different model struc-
tures give. Each of the BJ, OE, ARMAX, and ARX structures offer their
own advantages, and we will discuss them in Section 7.2.

Prediction

Starting with model (74), it is possible to predict what the output y(¢) will
be, based on measurements of u(s), y(s) s < t—1, using the general formula

30

&
Gr—

U 1 Y
— ARX
1 R
f
U B Y
— b)) OE
F \&/
{ ;
C
U /L 1 Y
B) 1 ARMAX
e
¢
D
u B /D Yy
=)y BJ
F \&/

Figure 1: Model structures.

31

(65) Tt is easiest to calculate the prediction for the OE-case, H(q,0) = 1,
when we obtain the model

y(t) = G(g, 0)u(t) + e(t)
with the natural prediction (1 — H~' = 0)

y(t10) = G(g, O)u(t) (79)
From the ARX case (78) we obtain

y(t) = —ary(t —1) — - -+ — anay(t — na)
+biu(t —nk) + -+ - + bppyu(t —nk —nb+ 1) + e(t) (80)

and the prediction (delete e(#)!)

g(tl0) = —ary(t —1) — - -+ — anay(t — na) (81)
+byu(t —nk) + -+ bypu(t —nk —nb+1)

Note the difference between (79) and (81). In the OE model the prediction
is based entirely on the input {u(t)}, whereas the ARX model also uses old
values of the output.

Linear Regression

Both tailor-made and ready-made models describe how the predicted value
of y(t) depends on old values of y and u and on the parameters . We denote
this prediction by

y(t]0)
See (65). In general this can be a rather complicated function of §. The
estimation work is considerably easier if the prediction is a linear function of

0:

§(tlo) = 0" (1) (82)

32

Here 6 is a column vector that contains the unknown parameters, while ¢(t)
is a column vector formed by old inputs and outputs. Such a model structure
is called a linear regression. We discussed such models in Section 1.3, and
noted that the ARX model (78) is one common model of the linear regression
type. Linear regression models can also be obtained in several other ways.
See Example 2.

4 Special Estimation Techniques for Linear
Black Box Models

An important feature of a linear, time invariant system is that it is entirely
characterized by its impulse response. So if we know the system’s response
to an impulse, we will also know its response to any input. Equivalently,
we could study the frequency response, which is the Fourier transform of the
impulse response.

In this section we shall consider estimation methods for linear systems, that
do not use particular model parameterizations. First, in Section 4.1, we shall
consider direct methods to determine the impulse response and the frequency
response, by simply applying the definitions of these concepts.

In section 4.2 methods for estimating the impulse response by correlation
analysis will be described, and in Section 4.3 spectral analysis for frequency
function estimation will be discussed. Finally, in Section 4.4 a recent method
to estimate general linear systems (of given order, by unspecified structure)
will be described.

4.1 Transient and Frequency Analysis
Transient Analysis

The first step in modeling is to decide which quantities and variables are
important to describe what happens in the system. A simple and common
kind of experiment that shows how and in what time span various variables

33

affect each other is called step-response analysis or transient analysis. In
such experiments the inputs are varied (typically one at a time) as a step:
u(t) = wug, t < to; u(t) = uq, t > ty. The other measurable variables in the
system are recorded during this time. We thus study the step response of the
system. An alternative would be to study the impulse response of the system
by letting the input be a pulse of short duration. From such measurements,
information of the following nature can be found:

1. The variables affected by the input in question. This makes it easier
to draw block diagrams for the system and to decide which influences
can be neglected.

2. The time constants of the system. This also allows us to decide which
relationships in the model can be described as static (that is, they have
significantly faster time constants than the time scale we are working
with.

3. The characteristic (oscillatory, poorly damped, monotone, and the like)
of the step responses, as well as the levels of static gains. Such in-
formation is useful when studying the behavior of the final model in
simulation. Good agreement with the measured step responses should
give a certain confidence in the model.

Frequency Analysis

If a linear system has the transfer function G(¢) and the input is
u(t) = ugcoswkT, (k—1)T <t <kT (83)

then the output after possible transients have faded away will be

y(t) = yocos(wt +), for t=T,2T,3T,... (84)
where

yo =G (™) - ug (85)

¢ = arg G(e™7T) (86)

34

If the system is driven by the input (83) for a certain ug and w; and we
measure y, and ¢ from the output signal, it is possible to determine the
complex number G (e“'") using (85)-(86). By repeating this procedure for a
number of different w, we can get a good estimate of the frequency function
G(e™T). This method is called frequency analysis. Sometimes it is possible
to see or measure ug, Yo, and ¢ directly from graphs of the input and output
signals. Most of the time, however, there will be noise and irregularities that
make it difficult to determine ¢ directly. A suitable procedure is then to
correlate the output with coswt and sin wt.

4.2 Estimating Impulse Responses by Correlation Anal-
ysis

It is not necessary to use an impulse as input to estimate the impulse response
of a system directly. That can also be done by correlation techniques. To
explain how these work, let us first define correlation functions.

The cross covariance function between two signals y and u is defined as
the covariance between the random variables y(¢) and u(t — 7), viewed as a
function of the time difference 7:

Ry (1) = E(y(t) — Ey(t))(u(t —7) — Eu(t — 7)) (87)

It is implicitly assumed here that the indicated expectation does not depend
on absolute time ¢. This is the same as saying that the signals are (weakly)
stationary.

Just as in the case (32), expectation can be replaced by sample means:

= Jim 5 2ot 9
Bonlr) = Jim 5 3 (9(8) = my)u(t = 7) =) (59)

As soon as we use the term covariance function, there is always an implied

35

assumption that the involved signals are such that either (87) or (89) is well
defined.

The cross correlation signal between a signal u and itself, i.e. Ry, (7) = R,(T)
is called the (auto) covariance function of the signal.

We shall say that two signals are uncorrelated if their cross covariance func-
tion is identically equal to zero.

Let us consider the general linear model (56), and assume that the input u
and the noise v are uncorrelated:

) = 3 gt — 1) + o(t) (90)

The cross covariance function between u and y is then

o0

R, (1) = Ey(t)u(t — 1) = Z geBu(t — k)u(t — 1)
k=0 (91)
+ Ev(t)u(t — 1) = 2_: g Ry (17— k)

If the input is white noise,

AT=0
Ru(7) = {0, 70
we obtain
R,.(T) = Ag; (92)

The cross covariance function Ry, (T) will thus be proportional to the impulse
response. Of course, this function is not known, but it can be estimated in an
obvious way from observed inputs and outputs as the corresponding sample
mean:

R (7) = S w(tult — 7) (93)

36

In this way we also obtain an estimate of the impulse response:
g7 =S 1yu(7) (94)

If we cannot choose the input ourselves, and it is non white, it would be
possible to estimate its covariance function as R (), analogous to (93), and
then solve for g, from (91) where R, and R,, have been replaced by the
corresponding estimates. However, a better and more common way is the
following: First note that if both input and output are filtered through the
same filter

yr(t) = L(g)y(t) ur(t) = L(q)u(t) (95)

then the filtered signals will be related by the same impulse response as in
(90):

yr(t) = i_o: grup(t — k) + vp(t) (96)

Now, for any given input u(¢) the the process, we can choose the filter L so
that the signal {up(¢)} will be as white as possible. Such a filter is called a
whitening filter. Tt is often computed by describing u(t) as an AR process
(This is an ARX model without an input, cf Section 1.3): A(q)u(t) = e(t).
The polynomial A(q) = L(g) can then be estimated using the least squares
method. (See Section 1.3). We can now use the estimate (94) applied to the
filtered signals.

4.3 Estimating the Frequency Response by Spectral
Analysis
Definitions

The cross spectrum between two (stationary) signals u(t) and y(¢) is defined
as the Fourier transform of their cross covariance function, provided this

37

exists:

D)= 3 Ry(r)e ™ (o7)

T=—00

where Ry, (7) is defined by (87) or (89). The (auto) spectrum ®,(w) of a
signal u is defined as ®,,(w), i.e. as its cross spectrum with itself.

The spectrum describes the frequency contents of the signal. The connection
to more explicit Fourier techniques is evident by the following relationship

d,(w) = limoo —|Un(w)? (98)

Un(w) = u(t)e™ (99)

The relationship (98) is shown, e.g. in [Ljung and Glad, 1994].

Consider now the general linear model (56):

y(t) = Glo)ult) + v () (100)

It is straightforward to show that the relationships between the spectra and
cross spectra of y and u (provided u and v are uncorrelated) is given by

Py (w) = G(ei“.’ D, (w) (101)
Oy (w) = |G (™) "Py(w) + Ty (w) (102)

It is easy to see how the transfer function G(e*’) and the noise spectrum
¢y(w) can be estimated using these expressions, if only we have a method to
estimate cross spectra.

38

Estimation of Spectra

The spectrum is defined as the Fourier transform of the correlation function.
A natural idea would then be to take the transform of the estimate }A?;\L(T)
in (93). That will not work in most cases, though. The reason could be
described as follows: The estimate Ré\; (7) is not reliable for large 7, since it
is based on only a few observations. These ”"bad” estimates are mixed with
good ones in the Fourier transform, thus creating an overall bad estimate.
It is better to introduce a weighting, so that correlation estimates for large

lags 7 carry a smaller weight:

i)évu(w) = 27: RY (0) - w. (£)e™" (103)

‘yu
l=—r

This spectral estimation method is known as the The Blackman-Tukey ap-
proach. Here w.(¢) is a window function that decreases with |7|. This func-
tion controls the trade-off between frequency resolution and variance of the
estimate. A function that gives significant weights to the correlation at large
lags will be able to provide finer frequency details (a longer time span is
covered). At the same time it will have to use "bad” estimates, so the sta-
tistical quality (the variance) is poorer. We shall return to this trade-off in
a moment. How should we choose the shape of the window function w., (¢)?
There is no optimal solution to this problem, but the most common window
used in spectral analysis is the Hamming window:

wk
11)7(k):%(1+cos7) k| <~ (104)
wy(k) =0 k| >
From the spectral estimates ®,, ®, and ®,, obtained in this way, we can
now use (101) to obtain a natural estimate of the frequency function G(e™):

(105)

39

Furthermore, the disturbance spectrum can be estimated from (102) as

- - B (w)P?
PN (w) =) (w) — =L 106
Y =8 - (106
To compute these estimates, the following steps are performed:
Algorithm SPA (107)

1. Collect data y(k), u(k) k=1,..., N.

2. Subtract the corresponding sample means form the data. This will
avoid bad estimates at very low frequencies.

3. Choose the width of the lag window w, (k).

DN DN DN :
4. Compute R, (k), R (k), and R, (k) for |k| <~ according to (93).
5. Form the spectral estimates @év(w), @fy(w), and @é‘;(w) according to
(103) and analogous expressions.

6. Form (105) and possibly also (106).

The user only has to choose v. A good value for systems without sharp
resonances is v = 20 to 30. Larger values of v may be required for systems
with narrow resonances.

Quality of the Estimates

The estimates Gy and CAD{X are formed entirely from estimates of spectra and
cross spectra. Their properties will therefore be inherited from the properties
of the spectral estimates. For the Hamming window with width -, it can be
shown that the frequency resolution will be about

T radians/time unit (108)

V2

40

This means that details in the true frequency function that are finer than
this expression will be smeared out in the estimate. It is also possible to
show that the estimate’s variances satisfy

A d,(w
Var Gy (iw) & 0.7 - % : %Ew; (109)
and
Var & (w) ~ 0.7 - % L2 (w) (110)

[Variance” here refers to taking expectation over the noise sequence v(t).]
Note that the relative variance in (109) typically increases dramatically as
w tends to the Nyquist frequency. The reason is that |G (iw)| typically de-
cays rapidly, while the noise-to-signal ratio ®,(w)/®,(w) has a tendency to
increase as w increases. In a Bode diagram the estimates will thus show con-
siderable fluctuations at high frequencies. Moreover, the constant frequency
resolution (108) will look thinner and thinner at higher frequencies in a Bode
diagram due to the logarithmic frequency scale.

See [Ljung and Glad, 1994] for a more detailed discussion.

Choice of Window Size

The choice of v is a pure trade-off between frequency resolution and variance
(variability). For a spectrum with narrow resonance peaks it is thus necessary
to choose a large value of v and accept a higher variance. For a more flat
spectrum, smaller values of v will do well. In practice a number of different
values of ~y are tried out. Often we start with a small value of v and increase
it successively until an estimate is found that balances the trade-off between
frequency resolution (true details) and variance (random fluctuations). A
typical value for spectra without narrow resonances is y= 20-30.

41

4.4 Subspace Estimation Techniques for State Space
Models

A linear system can always be represented in state space form:

x(t + 1) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) + Du(t) + e(t) (111)

We assume that we have no insight into the particular structure, and we
would just estimate any matrices A, B, C, and D, that give a good description
of the input-output behavior of the system. This is not without problems,
among other things because there are an infinite number of such matrices
that describe the same system (the similarity transforms). The coordinate
basis of the state-space realization thus needs to be fixed.

Let us for a moment assume that not only are u and y measured, but also
the sequence of state vectors x. This would, by the way, fix the state-space
realization coordinate basis. Now, with known u,y and z, the model (111)
becomes a linear regression: the unknown parameters, all of the matrix en-
tries in all the matrices, mix with measured signals in linear combinations.
To see this clearly, let

o= (*45")

Then, (111) can be rewritten as
Y(t) = 0d(t) + E(t) (112)

From this all the matrix elements in © can be estimated by the simple least
squares method, as described in Section 1.3. The covariance matrix for E(t)

42

can also be estimated easily as the sample sum of the model residuals. That
will give the covariance matrices for w and e, as well as the cross covariance
matrix between w and e. These matrices will, among other things, allow us
to compute the Kalman filter for (111). Note that all of the above holds
without changes for multivariable systems, i.e., when the output and input
signals are vectors.

The only remaining problem is where to get the state vector sequence x
from. It has long been known, e.g., [Rissanen, 1974, [Akaike, 1974b], that
all state vectors x(t) that can be reconstructed from input-output data in
fact are linear combinations of the components of the n k-step ahead output
predictors

g(t+klt), k={1,2,...,n} (113)

where n is the model order (the dimension of z). See also Appendix 4.A in
[Ljung, 1987]. We could then form these predictors, and select a basis among
their components:

g(t +11t)
w(t) = L : (114)

it + nlt)

The choice of L will determine the basis for the state-space realization, and
is done in such a way that it is well conditioned. The predictor §(t + k|t) is
a linear function of u(s),y(s), 1 < s <t and can efficiently be determined
by linear projections directly on the input output data. (There is one com-
plication in that u(t+ 1), ..., u(t + k) should not be predicted, even if they
affect y(t + k).)

What we have described now is the subspace projection approach to es-
timating the matrices of the state-space model (111), including the ba-
sis for the representation and the noise covariance matrices. There are a
number of variants of this approach. See among several references, e.g.
[Overschee and DeMoor, 1994|, [Larimore, 1983]

The approach gives very useful algorithms for model estimation, and is par-
ticularly well suited for multivariable systems. The algorithms also allow

43

numerically very reliable implementations. At present, the asymptotic prop-
erties of the methods are not fully investigated, and the general results quoted
in Section 2.2 are not directly applicable. Experience has shown, however,
that confidence intervals computed according to the general asymptotic the-
ory, are good approximations. One may also use the estimates obtained by
a subspace method as initial conditions for minimizing the prediction error
criterion (24).

5 Physically parameterized models

So far we have treated the parameters # only as vehicles to give reasonable
flexibility to the transfer functions in the general linear model (62). This
model can also be arrived at from other considerations.

Consider a continuous time state space model
x(t) = A(0)x(t) + B(O)u(t) (115a)
y(t) = C(0)x(t) + v(t) (115h)

Here x(t) is the state vector and typically consists of physical variables (such
as positions and velocities etc). The state space matrices A, B and C are
parameterized by the parameter vector 6, reflecting the physical insight we
have into the process. The parameters could be physical constants (resis-
tance, heat transfer coefficients, aerodynamical derivatives etc) whose values
are not known. They could also reflect other types of insights into the sys-
tem’s properties.

Example 8.4 An electric motor

Consider an electric motor with the input u being the applied voltage and the
output y being the angular position of the motor shaft.

A first, but reasonable approximation of the motor’s dynamics is as a first

44

order system from wvoltage to angular velocity, followed by an integrator:

b

Gls) = s(s+a)

If we select the state variables

we obtain the state space form

._(0 1) +<0>
o a)"T)" (116)

y=(1 0)z+w

where v denotes disturbances and noise. In this case we thus have

1= (5)
aw=(" 1) s (") 17)
C=(1 0)

The parameterization reflects our insight that the system contains an integra-
tion, but is in this case not directly derived from detailed physical modeling.
Basic physical laws would in this case have given us how 6 depends on phys-
ical constants, such as resistance of the wiring, amount of inertia, friction
coefficients and magnetic field constants. O

Now, how do we fit a continuous-time model (115a) to sampled observed
data? If the input u(¢) has been piecewise constant over the sampling interval

u(t) = u(kT) ET <t< (k+1)T

then the states, inputs and outputs at the sampling instants will be repre-
sented by the discrete time model

o((k + 1)T) = AO)x(kT) + BO)u(kT)
= C(0)x(kT

y(kT) (0)x(kT) 4+ v(kT) (118)

45

where
_ _ T
A(f) = AOT . B(9) = / A0 B(6)dr (119)
J0

This follows from solving (115) over one sampling period. We could also
further model the added noise term v(kT) and represent the system in the
innovations form

z((k+1)T) = A(0)x(kT) (120)
y(kT) = C(0)a(T)

where {e(kT)} is white noise. The step from (118) to (120) is really a stan-
dard Kalman filter step: z will be the one-step ahead predicted Kalman
states. A pragmatic way to think about it is as follows: In (118) the term
v(kT) may not be white noise. If it is colored we may separate out that part
of v(kT) that cannot be predicted from past values. Denote this part by
e(kT): it will be the innovation. The other part of v(kT') — the one that can
be predicted — can then be described as a combination of earlier innovations,
e({T)l < k. Tts effect on y(kT) can then be described via the states, by
changing them from z to z, where & contains additional states associated
with getting v(kT) from e(¢T), k < ¢.

Now (120) can be written in input output from as (let 7'= 1)
y(t) = G(q,0)u(t) + H(g, 0)e(t) (121)

with
7 (122)

We are thus back at the basic linear model (62). The parameterization of G
and H in terms of 6 is however more complicated than the ones we discussed
in Section 3.2.

The general estimation techniques, model properties (including the charac-
terization (68)), algorithms, etc., apply exactly as described in Section 2.

46

From these examples it is also quite clear that non-linear models with un-
known parameters can be approached in the same way. We would then
typically arrive at a a structure

(1)

y(t)

fla(t), u(t), 0)
h(w(t), u(t), 0) + v(t) (123)

In this model, all noise effects are collected as additive output disturbances
v(t) which is a restriction, but also a very helpful simplification. If we define
y(t|0) as the simulated output response to (123), for a given input, ignor-
ing the noise v(t), everything that was said in Section 2 about parameter
estimation, model properties, etc. is still applicable.

6 Non-linear Black Box Models

In this section we shall describe the basic ideas behind model structures that
have the capability to cover any non-linear mapping from past data to the
predicted value of y(t). Recall that we defined a general model structure as
a parameterized mapping in (19):

y(tle) = g0, Z2") (124)

We shall consequently allow quite general non-linear mappings g. This
section will deal with some general principles for how to construct such
mappings, and will cover Artificial Neural Networks as a special case. See
[Sjoberg et al., 1995] and [Juditsky et al., 1995] for recent and more compre-
hensive surveys.

6.1 Non-Linear Black-Box Structures

Now, the model structure family (124) is really too general, and it turns out
to be useful to write ¢ as a concatenation of two mappings: one that takes
the increasing number of past observations Z!~! and maps them into a finite

47

dimensional vector ¢(t) of fixed dimension and one that takes this vector to
the space of the outputs:

§(to) = g(0. 2" 1) = g(e(1).0) (125)

where

p(t) = (2" (126)

Let the dimension of ¢ be d. As before, we shall call this vector the regression
vector and its components will be referred to as the regressors. We also
allow the more general case that the formation of the regressors is itself
parameterized:

o(t) = (2" " n) (127)

which we for short write ¢(¢,7). For simplicity, the extra argument 1 will
however be used explicitly only when essential for the discussion.

The choice of the non-linear mapping in (124) has thus been reduced to two
partial problems for dynamical systems:

1. How to choose the non-linear mapping ¢g(¢) from the regressor space
to the output space (i.e., from R? to RP).

2. How to choose the regressors () from past inputs and outputs.

The second problem is the same for all dynamical systems, and it turns out
that the most useful choices of regression vectors are to let them contain past
inputs and outputs, and possibly also past predicted /simulated outputs. The
regression vector will thus be of the character (4). We now turn to the first
problem.

48

6.2 Non-Linear Mappings: Possibilities
Function Expansions and Basis Functions

The non-linear mapping

9(p.0) (128)

goes from R? to RP for any given 6. At this point it does not matter how the
regression vector ¢ is constructed. It is just a vector that lives in RY.

It is natural to think of the parameterized function family as function ex-
pansions:

9(p,0) = 0(k)gr(e) (129)

where g are the basis functions and the coefficients §(k) are the “coordinates”
of g in the chosen basis.

Now, the only remaining question is: How to choose the basis functions
gr? Depending on the support of g (i.e. the area in R? for which g ()
is (practically) non-zero) we shall distinguish between three types of basis
functions

e Global basis functions
e Semi-global or ridge-type basis functions

e Local basis functions

A typical and classical global basis function expansion would then be the
Taylor series, or polynomial expansion, where g, would contain multinomials
in the components of ¢ of total degree k. Fourier series are also relevant ex-
amples. We shall however not discuss global basis functions here any further.
Experience has indicated that they are inferior to the semi-local and local
ones in typical practical applications.

49

Local Basis Functions

Local basis functions have their support only in some neighborhood of a given
point. Think (in the case of p=1) of the indicator function for the unit cube:

k(p) = 11if |pr| <1 VEk, and 0 otherwise (130)

By scaling the cube and placing it at different locations we obtain the func-
tions

9k () = k(g * (¢ — Br)) (131)

By allowing «: to be a vector of the same dimension as ¢ and interpreting the
multiplication x as component-wise multiplication (like “.x” in MATLAB) we
may also reshape the cube to be any parallelepiped. The parameters « are
thus scaling or dilation parameters while 3 determine location or translation.
For notational convenience we write

9i(@) = k(o * (@ — Br)) = K(pk - ©) (132)

where

Pk = [k, o * By
In the last equality, with some abuse of notation, we expanded the regression
vector ¢ to contain some “17:s. This is to stress the point that the argument

of the basic function « is bilinear in the scale and location parameters p, and
in the regression vector ¢. The notation p, - ¢ indicates this.

This choice of g, in (129) gives functions that are piecewise constant over
areas in R? that can be chosen arbitrarily small by proper choice of the
scaling parameters. It should be fairly obvious that such functions g, can
approximate any reasonable function arbitrarily well.

Now it is also reasonable that the same will be true for any other localized
function, such as the Gaussian bell function:

k() = e 17 (133)

50

Ridge-type Basis Functions

A useful alternative is to let the basis functions be local in one direction of
the p-space and global in the others. This is achieved quite analogously to
(131) as follows. Let o(x) be a local function from R to R. Then form

g(e) = olai (v — Br)) = alarp +m) = o(px - ¢) (134)
where the scalar v, = —al B¢, and
pr = [0, Vi)

Note the difference with (131)! The scalar product o} ¢ is constant in the
subspace of R? that is perpendicular to the scaling vector a;. Hence the
function gx(p) varies like o in a direction parallel to a; and is constant
across this direction. This motivates the term semi-global or ridge-type for
this choice of functions.

As in (131) we expanded in the last equality in (134) the vector ¢ with the
value "1”, again just to emphasize that the argument of the fundamental
basis function o is bilinear in p and .

Connection to “Named Structures”

Here we briefly review some popular structures, other structures related to in-
terpolation techniques are discussed in [Sjoberg et al., 1995, Juditsky et al., 1995].

Wavelets The local approach corresponding to (129,131) has direct con-
nections to wavelet networks and wavelet transforms. The exact relationships
are discussed in [Sjoberg et al., 1995]. Loosely, we note that via the dilation
parameters in p, we can work with different scales simultaneously to pick
up both local and not-so-local variations. With appropriate translations and
dilations of a single suitably chosen function x (the “mother wavelet”), we
can make the expansion (129) orthonormal. This is discussed extensively in
[Juditsky et al., 1995].

51

Wavelet and Radial Basis Networks. The choice (133) without any or-

thogonalization is found in both wavelet networks, [Zhang and Benveniste, 1992

and radial basis neural networks [Poggio and Girosi, 1990].

Neural Networks The ridge choice (134) with

B 1

S lte

gives a much-used neural network structure, viz. the one hidden layer feed-
forward sigmoidal net.

o(z)

Hinging Hyperplanes Ifinstead of using the sigmoid o function we choose
“V-shaped” functions (in the form of a higher-dimensional “open book”)
Breiman’s hinging hyperplane structure is obtained, [Breiman, 1993]. Hing-
ing hyperplanes model structures [Breiman, 1993] have the form

g(x) :max{ﬁ+$+’y+ , ﬁfaﬂ—vf} or
g(z) :r1r1i11{6+.7:+'y+ : ﬁ’m+7*} .

It can be written in a different way:

o) = LB 4B)e by T G|8 — 8 a4yt =]

Thus a hinge is the superposition of a linear map and a semi-global function.
Therefore, we consider hinge functions as semi-global or ridge-type, though
it is not in strict accordance with our definition.

Nearest Neighbors or Interpolation By selecting x as in (130) and the
location and scale vector pg in the structure (131), such that exactly one
observation falls into each “cube”, the nearest neighbor model is obtained:
just load the input-output record into a table, and, for a given ¢, pick the
pair (7, @) for ¢ closest to the given ¢, g is the desired output estimate.
If one replaces (130) by a smoother function and allow some overlapping
of the basis functions, we get interpolation type techniques such as kernel
estimators.

52

Fuzzy Models Also so called fuzzy models based on fuzzy set membership
belong to the model structures of the class (129). The basis functions g5 then
are constructed from the fuzzy set membership functions and the inference
rules. The exact relationship is described in [Sjoberg et al., 1995].

6.3 Estimating Non-linear Black Box Models

The model structure is determined by the following choices

e The regression vector (typically built up from past inputs and outputs)
e The basic function x (local) or o (ridge)

e The number of elements (nodes) in the expansion (129).

Once these choices have been made 4(¢|0) = g(p(t), 8) is a well defined func-
tion of past data and the parameters . The parameters are made up of
coordinates in the expansion (129), and from location and scale parameters
in the different basis functions.

All the algorithms and analytical results of Section 2 can thus be applied. For
Neural Network applications these are also the typical estimation algorithms
used, often complemented with regularization, which means that a term is
added to the criterion (24), that penalizes the norm of #. This will reduce
the variance of the model, in that ”spurious” parameters are not allowed to
take on large, and mostly random values. See e.g. [Sjoberg et al., 1995].

For wavelet applications it is common to distinguish between those param-
eters that enter linearly in ¢(¢/#) (i.e. the coordinates in the function ex-
pansion) and those that enter non-linearly (i.e. the location and scale pa-
rameters). Often the latter are seeded to fixed values and the coordinates
are estimated by the linear least squares method. Basis functions that give
a small contribution to the fit (corresponding to non-useful values of the
scale and location parameters) can them be trimmed away (”pruning” or
”shrinking”).

23

7 User’s Issues

7.1 Experiment Design

It is desirable to affect the conditions under which the data are collected.
The objective with such experiment design is to make the collected data set
ZN as informative as possible with respect to the models to be built using the
data. A considerable amount of theory around this topic can be developed
and we shall here just review some basic points.

The first and most important point is the following one

1. The input signal u must be such that it exposes all the relevant proper-
ties of the system. It must thus not be too “simple”. For example, a
pure sinusoid

u(t) = Acoswt

will only give information about the system’s frequency response at
frequency w. This can also be seen from (68). The rule is that

e the input must contain at least as many different frequencies as
the order of the linear model to be built.

To be on the safe side, a good choice is to let the input be random
(such as filtered white noise). It then contains all frequencies.

Another case where the input is too simple is when it is generated by
feedback such as

u(t) = —Ky(t) (135)
If we would like to build a first order ARX model

y(t) +ay(t—1) =bu(t — 1) + e(t)
we find that for any given « all models such that

a+bK =«

54

will give identical input-output data. We can thus not distinguish be-
tween these models using an experiment with (135). That is, we can
not distinguish between any combinations of “a” and “b” if they satisfy
the above condition for a given “a”. The rule is

e If closed-loop experiments have to be performed, the feedback law
must not be too simple. It is to be preferred that a set-point in
the regulator is being changed in a random fashion.

The second main point in experimental design is

. Allocate the input power to those frequency bands where a good model
in particularly important.

This is also seen from the expression (68).

If we let the input be filtered white noise, this gives information how
to choose the filter. In the time domain it is often useful to think like
this:

e Use binary (two-level) inputs if linear models are to be built: This
gives maximal variance for amplitude-constrained inputs.

e Check that the changes between the levels are such that the input
occasionally stays on one level so long that a step response from
the system has time, more or less, to settle. There is no need to let
the input signal switch so quickly back and forth that no response
in the output is clearly visible.

Note that the second point is really just a reformulation in the time
domain of the basic frequency domain advice: let the input energy be
concentrated in the important frequency bands.

A third basic piece of advice about experiment design concerns the

choice of sampling interval.

. A typical good sampling frequency is 10 times the bandwidth of the
system. That corresponds roughly to 5 7 samples along the rise time
of a step response.

39

7.2 Model Validation and Model Selection

The system identification process has, as we have seen, these basic ingredients

e The set of models
e The data

e The selection criterion

Once these have been decided upon, we have, at least implicitly, defined a
model: The one in the set that best describes the data according to the
criterion. It is thus, in a sense, the best available model in the chosen set.
But is it good enough? It is the objective of model validation to answer that
question. Often the answer turns out to be “no”, and we then have to go
back and review the choice of model set, or perhaps modify the data set. See
Figure 2!

How do we check the quality of a model? The prime method is to investigate
how well it is capable of reproducing the behavior of a new set of data (the
validation data) that was not used to fit the model. That is, we simulate the
obtained model with a new input and compare this simulated output. One
may then use one’s eyes or numerical measurements of fit to decide if the
fit in question is good enough. Suppose we have obtained several different
models in different model structures (say a 4th order ARX model, a 2nd
order BJ model, a physically parameterized one and so on) and would like to
know which one is best. The simplest and most pragmatic approach to this
problem is then to simulate each one of them on validation data, evaluate
their performance, and pick the one that shows the most favorable fit to
measured data. (This could indeed be a subjective criterion!)

The second basic method for model validation is to examine the residuals
(“the leftovers”) from the identification process. These are the prediction
errors

~

£(t) = e(t,0n) = y(t) — §(t10n)

i.e. what the model could not “explain”. Ideally these should be independent
of information that was at hand at time t—1. For example if £(¢) and u(t—7)

96

Construct

Data
not OK

experiment,

_ collect data

Data

Polish and
present data

Data

Model

Choose model Fit model
structure to data

Model structure
not OK

No

Validate
model

Figure 2: The identification loop

o7

turn out to be correlated, then there are things in y(¢) that originate from
u(t — 7) but have not been properly accounted for by 4(¢/#y) The model has
then not squeezed out all relevant information about the system from the
data.

It is good practice to always check the residuals for such (and other) depen-
dencies. This is known as residual analysis.

7.3 Software for System Identification

In practice System Identification is characterized by some quite heavy numer-
ical calculations to determine the best model in each given class of models.
This is mixed with several user choices, trying different model structures,
filtering data and so on. In practical applications we will thus need good
software support. There are now many different commercial packages for
identification available, such as Mathwork’s System Identification Toolbox
[Ljung, 1986], Matrix’s System Identification Module [M AT RI X, 1991] and
PIM [Landau, 1990]. They all have in common that they offer the following
routines:

A Handling of data, plotting, etc.

Filtering of data, removal of drift, choice of data segments, etc.

B Non-parametric identification methods

Estimation of covariances, Fourier transforms, correlation- and spectral-
analysis, etc.

C Parametric estimation methods

Calculation of parametric estimates in different model structures.

D Presentation of models

Simulation of models, estimation and plotting of poles and zeros, com-
putation of frequency functions, and plotting Bode diagrams, etc.

E Model validation

28

Computation and analysis of residuals (¢(¢,0y)). Comparison between
different models’ properties, etc.

The existing program packages differ mainly in various user interfaces and
by different options regarding the choice of model structure according to C
above. For example, MATLAB’s Identification Toolbox [Ljung, 1986] covers
all linear model structures discussed here, including arbitrarily parameterized
linear models in continuous time.

Regarding the user interface, there is now a clear trend to make it graphically
oriented. This avoids syntax problems and relies more on “click and move”,
at the same time as tedious menu-labyrinths are avoided. More aspects of
CAD tools for system identification are treated in [Ljung, 1993].

7.4 The Practical Side of System Identification

It follows from our discussion that the most essential element in the process
of identification — once the data have been recorded — is to try out various
model structures, compute the best model in the structures, using (24), and
then validate this model. Typically this has to be repeated with quite a few
different structures before a satisfactory model can be found.

The difficulties of this process should not be underestimated, and it will
require substantial experience to master it. Here follows however a procedure
that could prove useful to try out.

Step 1: Looking at the Data

Plot the data. Look at them carefully. Try to see the dynamics with
your own eyes. Can you see the effects in the outputs of the changes
in the input? Can you see nonlinear effects, like different responses at
different levels, or different responses to a step up and a step down?
Are there portions of the data that appear to be "messy” or carry
no information. Use this insight to select portions of the data for
estimation and validation purposes.

Do physical levels play a role in your model? If not, detrend the data
by removing their mean values. The models will then describe how

29

changes in the input give changes in output, but not explain the actual
levels of the signals. This is the normal situation. The default situation,
with good data, is that you detrend by removing means, and then select
the first two thirds or so of the data record for estimation purposes,
and use the remaining data for validation. (All of this corresponds to
the "Data Quickstart” in the MATLAB Identification Toolbox.)

Step 2: Getting a Feel for the Difficulties.

Compute and display the spectral analysis frequency response estimate,
the correlation analysis impulse response estimate as well as a fourth
order ARX model with a delay estimated from the correlation analysis
and a default order state-space model computed by a subspace method.
(All of this corresponds to the ”Estimate Quickstart” in the MATLAB
Identification Toolbox.) This gives three plots. Look at the agreement
between the

e Spectral Analysis estimate and the ARX and state-space models’
frequency functions.

e Correlation Analysis estimate and the ARX and state-space mod-
els’ transient responses

e Measured Validation Data output and the ARX and state-space
models’ simulated outputs. We call this the Model Output Plot.

If these agreements are reasonable, the problem is not so difficult, and
a relatively simple linear model will do a good job. Some fine tuning of
model orders, and noise models have to be made and you can proceed
to Step 4. Otherwise go to Step 3.

Step 3: Examining the Difficulties
There may be several reasons why the comparisons in Step 2 did not
look good. This section discusses the most common ones, and how they
can be handled:

e Model Unstable: The ARX or state-space model may turn out
to be unstable, but could still be useful for control purposes. Then
change to a 5- or 10-step ahead prediction instead of simulation
in the Model Output Plot.

60

Feedback in Data: If there is feedback from the output to the
input, due to some regulator, then the spectral and correlations
analysis estimates are not reliable. Discrepancies between these
estimates and the ARX and state-space models can therefore be
disregarded in this case. In residual analysis of the parametric
models, feedback in data can also be visible as correlation between
residuals and input for negative lags.

Noise Model: If the state-space model is clearly better than
the ARX model at reproducing the measured output this is an
indication that the disturbances have a substantial influence, and
it will be necessary to carefully model them.

Model Order: If a fourth order model does not give a good
Model Output plot, try eighth order. If the fit clearly improves, it
follows that higher order models will be required, but that linear
models could be sufficient.

Additional Inputs: If the Model Output fit has not significantly
improved by the tests so far, think over the physics of the applica-
tion. Are there more signals that have been, or could be, measured
that might influence the output? If so, include these among the in-
puts and try again a fourth order ARX model from all the inputs.
(Note that the inputs need not at all be control signals, anything
measurable, including disturbances, should be treated as inputs).

Nonlinear Effects: If the fit between measured and model out-
put is still bad, consider the physics of the application. Are there
nonlinear effects in the system? In that case, form the nonlinear-
ities from the measured data. This could be as simple as forming
the product of voltage and current measurements, if you realize
that it is the electrical power that is the driving stimulus in, say, a
heating process, and temperature is the output. This is of course
application dependent. It does not cost very much work, however,
to form a number of additional inputs by reasonable nonlinear
transformations of the measured ones, and just test if inclusion of
them improves the fit. See Example 2.

Still Problems? If none of these tests leads to a model that is
able to reproduce the Validation Data reasonably well, the conclu-

61

sion might be that a sufficiently good model cannot be produced
from the data. There may be many reasons for this. The most
important one is that the data simply do not contain sufficient
information, e.g., due to bad signal to noise ratios, large and non-
stationary disturbances, varying system properties, etc. The rea-
son may also be that the system has some quite complicated non-
linearities, which cannot be realized on physical grounds. In such
cases, nonlinear, black box models could be a solution. Among
the most used models of this character are the Artificial Neural
Networks (ANN). See Section 6.

Otherwise, use the insights on which inputs to use and which model
orders to expect and proceed to Step 4.

Step 4: Fine Tuning Orders and Noise Structures
For real data there is no such thing as a ”"correct model structure.”
However, different structures can give quite different model quality.
The only way to find this out is to try out a number of different struc-
tures and compare the properties of the obtained models. There are a
few things to look for in these comparisons:

e Fit Between Simulated and Measured Output L.ook at the
fit between the model’s simulated output and the measured one
for the Validation Data. Formally, you could pick that model, for
which this number is the lowest. In practice, it is better to be
more pragmatic, and also take into account the model complexity,
and whether the important features of the output response are
captured.

e Residual Analysis Test You should require of a good model,
that the cross correlation function between residuals and input
does not go significantly outside the confidence region. A clear
peak at lag k shows that the effect from input u(¢—k) on y(#) is not
properly described. A rule of thumb is that a slowly varying cross
correlation function outside the confidence region is an indication
of too few poles, while sharper peaks indicate too few zeros or
wrong delays.

62

e Pole Zero Cancelations If the pole-zero plot (including confi-
dence intervals) indicates pole-zero cancelations in the dynamics,
this suggests that lower order models can be used. In particular,
if it turns out that the order of ARX models has to be increased to
get a good fit, but that pole-zero cancelations are indicated, then
the extra poles are just introduced to describe the noise. Then try
ARMAX, OE, or BJ model structures with an A or F polynomial
of an order equal to that of the number of non-cancelled poles.

What Model Structures Should be Tested?

Well, you can spend any amount of time to check out a very large
number of structures. It often takes just a few seconds to compute
and evaluate a model in a certain structure, so that you should have a
generous attitude to the testing. However, experience shows that when
the basic properties of the system’s behavior have been picked up, it
is not much use to fine tune orders in absurdum just to improve the
fit by fractions of percents. For ARX models and state-space models
estimated by subspace methods there are also efficient algorithms for
handling many model structures in parallel.

Multivariable Systems

Systems with many input signals and/or many output signals are called
multivariable. Such systems are often more challenging to model. In
particular systems with several outputs could be difficult. A basic
reason for the difficulties is that the couplings between several inputs
and outputs leads to more complex models: The structures involved
are richer and more parameters will be required to obtain a good fit.

Generally speaking, it is preferable to work with state-space models in
the multivariable case, since the model structure complexity is easier
to deal with. It is essentially just a matter of choosing the model order.

Working with Subsets of the Input Output Channels: In the
process of identifying good models of a system it is often useful to select
subsets of the input and output channels. Partial models of the system’s
behavior will then be constructed. It might not, for example, be clear
if all measured inputs have a significant influence on the outputs. That
is most easily tested by removing an input channel from the data,
building a model for how the output(s) depend on the remaining input

63

channels, and checking if there is a significant deterioration in the model
output’s fit to the measured one. See also the discussion under Step
3 above. Generally speaking, the fit gets better when more inputs are
included and worse when more outputs are included. To understand
the latter fact, you should realize that a model that has to explain
the behavior of several outputs has a tougher job than one that just
must account for a single output. If you have difficulties to obtain good
models for a multi-output system, it might thus be wise to model one
output at a time, to find out which are the difficult ones to handle.
Models that just are to be used for simulations could very well be built
up from single-output models, for one output at a time. However,
models for prediction and control will be able to produce better results
if constructed for all outputs simultaneously. This follows from the fact
that knowing the set of all previous output channels gives a better basis
for prediction, than just knowing the past outputs in one channel.

step 5: Accepting the model The final step is to accept, at least for the
time being, the model to be used for its intended application. Recall
the answer to question 10 in the introduction: No matter how good
an estimated model looks on your screem, has only picked up a simple
reflection of reality. Surprisingly often, however, this is sufficient for
rational decision making.

References
[Akaike, 1974a] Akaike, H. (1974a). A new look at the statistical model
identification. IEEE Transactions on Automatic Control, AC-19:716 723.

[Akaike, 1974b] Akaike, H. (1974b). Stochastic theory of minimal realization.
IEEE Transactions on Automatic Control, AC-19:667-674.

[Astrom and Bohlin, 1965] Astrom, K. J. and Bohlin, T. (1965). Numerical
identification of linear dynamic systems from normal operating records. In
IFAC Symposium on Self-Adaptive Systems, Teddington, England.

[Box and Jenkins, 1970] Box, G. E. P. and Jenkins, D. R. (1970). Time
Series Analysis, Forcasting and Control. Holden-Day, San Francisco.

64

[Breiman, 1993] Breiman, L. (1993). Hinging hyperplanes for regression,
classification and function approximation. [IEFE Trans. Info. Theory,
39:999-1013.

[Brillinger, 1981] Brillinger, D. (1981). Time Series: Data Analysis and The-
ory. Holden-Day, San Francisco.

[Dennis and Schnabel, 1983] Dennis, J. E. and Schnabel, R. B. (1983). Nu-
merical methods for unconstrained optimization and nonlinear equations.
Prentice-Hall.

[Draper and Smith, 1981] Draper, N. and Smith, H. (1981). Applied Regres-
sion Analysis, 2nd ed. Wiley, New York.

[Juditsky et al., 1995] Juditsky, A., Hjalmarsson, H., Benveniste, A., Dey-
lon, B., Ljung, L., Sjéberg, J., and Zhang, Q. (1995). Nonlinear black-box
modeling in system identification: Mathematical foundations. Automatica,
31.

[Kushner and Yang, 1993] Kushner, H. J. and Yang, J. (1993). Stochastic
approximation with averaging of the iterates: Optimal asymptotic rate of

convergence for general processes. SIAM Journal of Control and Optimiza-
tion, 31(4):1045 1062.

[Landau, 1990] Landau, I. D. (1990). System Identificaiton and Control De-
sign Using P.I.M. + Software. Prentice Hall, Engelwood Cliffs.

[Larimore, 1983] Larimore, W. (1983). System identification, reduced or-
der filtering and modelling via canonical variate analysis. In Proc 1983
American Control Conference, San Francisco.

[Ljung, 1986] Ljung, L. (1986). The System Identification Toolboz: The
Manual. The MathWorks Inc. 1st edition 1986, 4th edition 1994, Nat-
ick, MA.

[Ljung, 1987| Ljung, L. (1987). System Identification - Theory for the User.
Prentice-Hall, Englewood Cliffs, N.J.

[Ljung, 1993| Ljung, L. (1993). Identification of linear systems. In Linkens,
D. A., editor, CAD for Control Systems. Marcel Dekker, New York.

65

[Ljung and Glad, 1994] Ljung, L. and Glad, T. (1994). Modeling of Dynamic
Systems. Prentice Hall, Englewood Cliffs.

[Ljung and Soderstrom, 1983] Ljung, L. and Séderstrém, T. (1983). Theory
and Practice of Recursive Identification. MIT press, Cambridge, Mass.

[MATRIX,, 1991) MATRIX, (1991). MATRIX, users guide. Integrated
Systems Inc., Santa Clara, CA.

[Overschee and DeMoor, 1994] Overschee, P. V. and DeMoor, B. (1994).
N4sid: Subspace algorithms for the identification of combined
deterministic-stochastic systems. Automatica, 30:75-93.

[Poggio and Girosi, 1990] Poggio, T. and Girosi, F. (1990). Networks for
approximation and learning. Proc. of the IEFEFE, 78:1481 1497.

[Polyak and Juditsky, 1992] Polyak, B. T. and Juditsky, A. B. (1992). Ac-
celeration of stochastic approximation by averaging. SIAIM J. Control
Optim., 30:838 855.

[Rissanen, 1974] Rissanen, J. (1974). Basis of invariants and canonical forms
for linear dynamic systems. Automatica, 10:175-182.

[Rissanen, 1978] Rissanen, J. (1978). Modelling by shortest data description.
Automatica, 14:465-471.

[Schoukens and Pintelon, 1991] Schoukens, J. and Pintelon, R. (1991). Iden-
tification of Linear Systems: A Practical Guideline to Accurate Modeling.
Pergamon Press, London (U.K.).

[Sjoberg et al., 1995] Sjoberg, J., Zhang, Q., Ljung, L., Benveniste, A., Dey-
lon, B., Glorennec, P., Hjalmarsson, H., and Juditsky, A. (1995). Nonlinear
black-box modeling in system identification: A unified overview. Automat-
ica, 31.

[Soderstrom and Stoica, 1989] Soderstrom, T. and Stoica, P. (1989). System
Identification. Prentice-Hall Int., London.

[Solbrand et al., 1985] Solbrand, G., Ahlen, A., and Ljung, L. (1985). Recur-
sive methods for off-line identification. International Journal of Control,
A41(1):177 191.

66

[Zhang and Benveniste, 1992] Zhang, Q. and Benveniste, A. (1992). Wavelet
networks. IEEFE Trans Neural Networks, 3:889 898.

/home/rt/ljung/papers/levine/levine.tex

67

